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Noise-Induced Inflation

Esteban Calzetta1
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We consider a closed Friedmann ±Robertson ±Walker universe driven by the
backreaction from a massless, non-conformall y coupled quantum scalar field.
We show that the backreaction of the quantum field is able to drive the
cosmological scale factor over the barrier of the classical potential so that if the
universe starts near zero scale factor (initial singularity) it can make the transition
to an exponentially expanding de Sitter phase with a probability comparable to
that from quantum tunneling processes. The emphasis throughout is on the
stochastic nature of backreaction, which comes from the quantum fluctuations
of the fundamental fields.

1. INTRODUCTION

In this paper, based on work done in collaboration with Enric Verdaguer

[1 ], we shall discuss a model of the early universe where a spatially closed

Friedmann±Robertson±Walker universe avoids recollapse and launchs into
inflationary expansion due to the effects of the backreaction of quantized

matter fields. Central to the argument is the fact that this backreaction is both

memory dependent and to some extent random, due to quantum fluctuations of

the fundamental fields. The stress on particle creation and noise is the main

novelty of our approach with respect to the by now large corpus of semiclassi-

cal cosmology [2].
To the best of our knowledge, this work is the most elaborate application

to date of the basic idea that quantum fluctuations of fundamental fields act

on the geometry of the universe as a stochastic energy-momentum tensor,

put forward by several researchers [3±9]. We shall pass briefly over the

technical details, which are contained in the original work, to concentrate on
the physical ideas. In next section, we give a general discussion of why and
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how stochastic terms ought to be included in Einstein equations; the subse-

quent section describes the model and the development of its solution, and

we conclude with some brief final remarks.

2. THE SEMICLASSICAL APPROXIMATION: PARTICLE
CREATION AND NOISE

Ever since the development of quantum mechanics and relativity theory

early in this century, their final unification has been one of the most sought
after prizes of theoretical physics. Moreover, as Hubble’ s observations and

then the discovery of the cosmic microwave radiation has taught us that the

structure of our universe is determined by events at the very beginning of

its evolution, this search for unification acquired more than academic interest,

since these early stages presumably demand a quantum description. However,

in spite of some progress, especially in the 196 0s, the goal of a quantum theory
of gravity seems now as elusive as ever (see refs. 10 for early approaches).

In the meantime, it has been realized that even without a full theory it

was possible to find answers to most pressing questions, at least from the

cosmological and astrophysical viewpoints. Basically the theoretical expecta-

tion is that quantum gravitational effects will become relevant at the Planck
scale (of 1019 GeV in natural units), while quantum effects associated with

matter are conspicuous at the scales associated with the masses of those

particles, orders of magnitude below that. Therefore, it makes sense to develop

models where the geometry of the universe (or, say, the space surrounding

a compact object) is treated in the terms of Einstein’ s theory (which is to

say, classically) while matter is quantized [2 ]. As shown by Parker [11 ], even
these restricted models leave ample room for exotic behavior, probably its

most spectacular manifestation being Hawking radiation [12, 13 ].

Now, there being no question that quantum fluctuations weigh, as shown

by the Casimir effect, their presence should affect the evolution of the said

geometry, on equal footing with other forms of matter, gravity included. So,

although models of quantum test fields on given backgrounds have been
immensely useful to clarify the formal aspects of the theory, the real goal is

to develop self-consistent models where the feedback between the quantum

matter and the classical geometry is fully accounted for. This raises the issue

of how the quantum matter affects the geometry.

The simplest and earliest answer to this question is that it is possible

that while the field amplitudes associated with matter are to be described
by operators in some functional space, other observables such as energy-

momentum, which are composites of field operators, may develop a conden-

sate or c-number part. In the simplest case, this condensate may be computed

as the expectation value of the corresponding composite operator in an ade-
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quate quantum state, and this expectation value is to be included as the

quantum matter contribution to Einstein’ s equations [14].

By now, there is a substantial body of work showing that this approach
can be made mathematically consistent [2 ]. However, there are also serious

doubts concerning whether it is physically satisfactory [15, 16 ]. One can

formulate these doubts with various degrees of sophistication, but the basic

argument goes as follows.

In a typical self-consistent evolution problem, the identification of the

energy-momentum tensor of the matter fields involves a normal ordering or
subtraction procedure, to take care of the ever-present divergences of quantum

field theory. Suppose this normal ordering amounts to subtracting the energy-

momentum defined with respect to some local vacuum state, the most sensible

choice being a local adiabatic vacuum of some order. Suppose we let the

model evolve from some time ti to some final time tf. In almost every

interesting case, the evolving geometry will mix the positive- and negative-
frequency components of the field operator, so that the creation and destruc-

tion operators of the adiabatic model at time tf will be related to that at time

ti by a Bogolubov transformation. This transformation is characterized by

two complex parameters, a and b , with ) a ) 2 2 ) b ) 2 5 1. If at time ti a given

one-particle state was occupied by n adiabatic particles, then at time tf we
find, on average, n8 5 ) b ) 2 1 n ) a ) 2 particles there (we assume Bose statistics,

for concreteness). This average is reflected in the evolution of the mean

energy-momentum. But the state at time tf will not, in general, be a state

with a well-defined occupation number (certainly not, if the state at time ti
was), and when we look at the dispersion in particle number, we see that

unless ) b ) 2 ¿ n, in which case we did not need to bother with self-consistency,
the average fluctuation in particle number is of the order of the mean occupa-

tion number itself. So the average energy momentum of the created particles

is only vaguely related to what might have happened ª on the spot.º

The issue then arises of how to introduce these fluctuations in an actual

model. Maybe the final answer is that nothing short of full quantum gravity

is truly satisfactory, but if one wishes to retain the classical character of the
metric, then it seems that the only possibility is to add to the mean energy-

momentum of the fields a stochastic component which would represent the

leading effects of the quantum fluctuations.

Halliwell and others [17, 18 ] have developed a picture which shows

that this classical, stochastic energy-momentum at least makes sense. In this

approach, the classical geometry is seen as an apparatus which measures the
energy-momentum of the quantum matter fields and reacts to the measured

value. It is then seen that the results are c-numbers, but their progression in

time does not follow deterministic laws. It is natural to extract the determinis-

tic, mean evolution and call the remainder random noise. In the limit where
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the measurements are inaccurate enough and repeated often enough, we may

assume that the evolution of the fluctuations will not be greatly perturbed

by the measurement process, and so they may be computed from ordinary
quantum field-theoretic rules.

2.1. The Closed-Time-Path Effective Action

In this limit, therefore, a new paradigm appears, derived from the work

of Feynman and Vernon [19 ]. We now regard the geometry as an open system
evolving in the environment provided by the matter quantum fluctuations

[20]. Since the detailed evolution of the latter is deemed irrelevant, our only

concern is to estimate the influence action, namely, the modification to the
gravitational action due to the influence of the environment. In the limit

where the geometry is actually taken to be classical, the task becomes identical

to that of computing the so-called Schwinger±Keldysh effective action [21].

We shall disregard the somewhat technical distinctions between these two

objects, regarding them as the same; in a nutshell, the Schwinger ±Keldish
or closed-time-path (CTP) effective action (EA) is the influence action evalu-

ated over an infinite time range, which actually takes care of some difficulties

in the evaluation of the influence action over finite lapses.

The CTPEA is a truly remarkable object, which achieves the miracle

of providing a well-defined variational method to derive causal but nonlocal-

in-time equations of motion. It is not hard to see where the difficulty lies.
Suppose you have a system described by some variable f (t), and write for

it an action functional S [f ] whose variation yields the equations of motion

d S/ d f (t) 5 0. If the equations are causal, then d 2S/ d f (t) d f (t8) 5 0 whenever

t8 . t. Since second derivatives commute, the second derivative actually

vanishes if only t8 Þ t, and the action must be necessarily local in time.

Since all dissipative effects are physically limiting cases of nonlocal time
interactions (when the response time of the bath is much shorter than the

characteristic time of the system), it follows more generally that there is no

variational principle for dissipative, causal evolutions.

The CTPEA achieves the impossible by adding to every degree of

freedom f +(t) a mirror degree of freedom f 2
(t), so that the CTPEA G 5

G [f +, f 2 ] and the equations of motion are d G / d f + 5 0. The right count of

degrees of freedom is restored by imposing, after the variation has been
taken, the constraint f + 5 f 2 5 f , the physical degree of freedom. Causality

only demands

d 2 G
d f +(t) d f +(t8)

1
d 2 G

d f +(t) d f 2 (t8)
5 0 when t , t8 (1)

For example, suppose that the solution to the equations of motion is
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just f 5 0, and we seek the dynamics of small fluctuations. The only quadratic

action compatible with the causality constraint has the form

G 5
1

2 # dt dt8 { [f ](t)$(t, t8){ f }(t8) 1 [f ](t)1(t, t8) [f ](t8)} (2)

where [f ] eq f + 2 f 2 ; { f } 5 f + 1 f 2 ; and $(t, t8) 5 0 if t , t8. The

equations of motion are

# dt8 $(t, t8) f (t8) 5 0 (3)

and we see that there is no obstacle to causality, with no further restrictions

on locality.

To actually compute the CTPEA, Schwinger observed that the mean
value of the field could be obtained from a generating functional

Z [J +, J 2 ] 5 eiW [J 1 ,J 2 ] 5 ^ TÄ (e 2 i * J 2 F )T(ei * J 1 F ) & (4)

where F is the Heisenberg field operator, the expectation value is taken with

respect to the corresponding quantum state, and T, TÄ stand for temporal and

antitemporal ordering, respectively. Indeed, if we define

f 6 5 6
d W

d J 6 (5)

Then in the limit J 6 ® 0, we obtain f + 5 f 2 5 ^ F & . This suggests

defining G as the Legendre transform of W

G [f +, f 2 ] 5 W [J+, J 2 ] 2 # (J+ f + 2 J 2 f 2 ) (6)

So in general we obtain

d G
d f 6 5 7 J 6

and for the physical mean field

d G
d f 6 Z f 1 5 f 2 5 ^ F &

5 0 (7)

as required. Observe that on top of Eq. (1), the quantum CTPEA obeys

G [f +, f 2 ] 5 2 G [f 2 , f + ]*, so that the kernel $ must be real (and so are the

equations of motion) and 1 is pure imaginary (1 5 iN ).

The CTPEA admits a functional representation derived from the usual

background field methods [22]
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ei G [f 1 , f 2 ] 5 # D w + D w 2
exp i F S( w +) 2 S( w 2

)

2
d G
d f + ( w + 2 f +) 1

d G
d f 2 ( w 2 2 f 2

) G (8)

The variables of integration must coincide at some very large time T `

in the future, and we have included the information on the quantum state in

the integration measure. In our case, we have both system ( w ) and environment

( c ) degrees of freedom, but we associate a mean field only to the former.
The classical action S will be the sum of the system action Ss , the environment

action Se , and the interaction term Si. In the semiclassical limit, we neglect

the deviation from the mean of the system variables, and the expression for

the CTPEA simplifies to

ei G [f 1 , f 2 ] 5 ei [Ss( f
1 ) 2 Ss( f

2 ) ]

3 # D c + D c 2 exp i [Se( c +) 1 Si ( f +, c +)

2 Se( c 2 ) 2 Si ( f 2 , c 2 ) ] (9)

where, again, the integration is nontrivial thanks to the integration measure

and the future boundary conditions.

Equation (9) provides a well-defined recipe for the CTPEA, and thence

finding the effective equations of motion is only a matter of computing power.

The question arises of when the solutions to the semiclassical equations are
relevant to the description of our experience. Mostly what we wish to do

is to compute expectation values of system observables. Insofar as these

observables do not involve environmental variables, their expectation values

will admit representations such as

! 5 # D f + D f 2 A [f +, f 2 ]ei G [f 1 , f 2 ] (1 0)

which under the saddle point approximation reduces to

! 5 A [f , f ] (11)

f being the solution to the mean-field equations. In other words, the semiclas-

sical equations will be useful if our only interest is to compute expectation
values for system observables, such that the integral (1 0) may be evaluated

by saddle point methods.

The CTPEA is a powerful method to derive equations of motion for

open (or effectively open) systems, which are guaranteed to be both real and
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causal [23, 24 ]. It is possibly the most powerful method at hand to study the

nonequilibrium evolution of quantum fields, especially if combined with

more sophisticated resummation methods which allow us to keep track of
higher Schwinger functions along with the mean field [25, 26 ]. But two

things ought to send an alarm signal. First, if we only care about the equations

of motion, we are only using a small part of the information encoded in the

CTPEA; for example, the kernel 1 is irrelevant to the linearized equations

(3). Second, there is no noise in the mean-field equations. We must stress

that this is not only unseemly, but, insofar as the equations of motion are
dissipative, it is actually wrong, as it violates the necessary balance between

fluctuations and dissipation [27].

2.2. Where Is the Noise?

To the best of our knowledge, it was Feynman who pointed out that the
untapped terms in the CTPEA contained the information about noise [19 ].

For simplicity, assume the CTPEA has the quadratic form (2). Then we have

the identity

ei G [f 1 , f 2 ] 5 # Dj r [ j ] exp H i

2 # dt dt8 [f ](t)$(t, t8){ f }(t8)

1 i # dt j(t) [f ](t) J (12)

with

^ j(t) j(t8) & [ # Dj r [ j ]j(t) j(t8) 5 N(t, t8) (13)

Now we can write the average (10)

! 5 # Dj r [ j ] # D f + D f 2 A [f +, f 2
]

3 exp H i

2 # dt dt8 [f ](t)$(t, t8){ f }(t8) 1 # dt j(t) [f ](t) J (14)

and use saddle point evaluation in the inner integral

! 5 # Dj r [ j ] A [f j , f j ] (15)
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where f j is the solution to

# dt8 $(t, t8) f (t8) 5 2 j(t) (16)

In this way, we have transformed the average of the observable ! over

the quantum fluctuations of the environment into the ensemble average over

the realizations of the ª noiseº j(t), at the same time upgrading the semiclassical

equations to the Langevin equations (16). As expected, the relevant informa-

tion on the noise (its correlation function), is given by the ª uselessº part of
the CTPEA, namely the kernel N 5 2 i1.

Of course, Eq. (12) is not the only way to decompose the CTPEA into

partial integrations. The point is that this particular decomposition makes

physical sense. To see this, assume the interaction term in the action takes

the particular form

Si 5 # dt J [c ]f (17)

with ^ J & 5 0 when f 5 0 but otherwise arbitrary. Then [3 ]

N(t, t8) 5
1

2
^ { J (t), J (t8)} & (18)

the expectation value being computed at f 5 0. Indeed, the Heisenberg

equation for this model is

d Ss

d f
5 2 J [c ] (19)

We assume that the Heisenberg operator for the system variable is close
to a c-number. Also, in the presence of a nonzero background f , the operator

J will generally develop a nonzero expectation value ^ J & f . Subtracting this,

we get

d Ss

d f
1 ^ J & f 5 2 ( J 2 ^ J & f ) (20)

The CTPEA, if we forget about noise, leads to the same equation with

no right-hand side. As discussed above, this is not acceptable. So the question

is, what is the sensible way of replacing the q-number operator in the right-

hand side of Eq. (2 0) by a c-number stochastic source? Of course, some loss
of information (especially concerning quantum coherence) is unavoidable,

and in particular cases this may invalidate the whole procedure. But whenever

quantum coherence is not the main concern, a Gaussian source with self-

correlation as in Eq. (18) (we again neglect ^ J & f , which vanishes at f 5 0,
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since we assume small fluctuations, but this is not essential) is the time-

honored answer, and indeed the only answer compatible with the fluctuation-

dissipation theorem [28 ].

3. NOISE-INDUCED INFLATION: WHEN NOISE MATTERS

As we have seen in the previous section, the CTPEA provides a system-

atic framework in which to study semiclassical evolution, taking into account

at least the leading effects due to quantum fluctuations of matter fields.
However, putting this framework into action is by no means a simple task.

Indeed, after the observation that the CTPEA provides a simple way of

deriving Einstein±Langevin equations [3], it was realized that actually car-

rying out the derivation is a research project in itself [4±8], to say nothing

of solving those equations once derived [9 ]. So it is natural to wonder if

noise makes such a difference as to justify this trouble.
The basic problem is that, while it would be easy to find problems where

the noise level is huge, this same noisiness would lead to the suspicion that

the whole semiclassical approach is breaking down. The real challenge is to

find a problem where the semiclassical approximation is reliable, and noise

still makes a difference. Indeed, in the case of conventional, noiseless semi-
classical theory, such a problem is Hawking evaporation of large black holes:

a weak effect, which puts in no jeopardy the validity of the semiclassical

approximation, but whose result is utterly impossible in terms of the classical

theory alone.

In this paper I will report on one such problem, a cyclic universe,

provided with a cosmological constant, but prevented from inflating by the
potential barrier from its own spatial curvature. In each cycle, the semiclassical

effects induce a transition from one classical orbit to another; the change is

small for each cycle, but overall it offers an escape route with no classical

analog. Our goal is to compute the average escape probability due to semiclas-

sical effects.

This problem has an important precedent, the calculation of the tunneling
amplitude due to Vilenkin [29 ]. It is important to realize the similarities and

differences between these two approaches. Vilenkin’ s calculation was fully

quantum gravitational, but it contemplated only the effects of the gravitational

field. It was tacitly assumed that, if any matter fields were present, they

would at most affect the prefactor of the exponentially suppressed tunneling

probability [30±35 ]. Our calculation is only semiclassical, but we put the
stress precisely on the effects of the matter fields. From the point of view

of the usual instanton approach, we could say ours is a highly nonperturbative

evaluation of the prefactor, since we go well beyond the test field one-loop

approximation. The result is that the escape probability due to the fluctuations
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in matter fields is at least as large as the tunneling one, suggesting that in

nature both must be taken into account. We shall not discuss subsequent

developments related to Vilenkin’ s proposal [36 ].
Since the calculation of the escape probability due to semiclassical

effects is discussed in some detail elsewhere [1 ], here I shall only give a

general discussion of the several steps involved, the peculiar difficulties of

each one, and how they could be overcome.

3.1. The Model

Our model is based on a spatially closed, homogeneous Friedmann±
Robertson±Walker (FRW) model, with a metric

ds2 5 a2(t)( 2 dt2 1 gÄ ij(x
k) dxi dx j), i, j, k 5 1, . . . , n 2 1 (21)

where a(t) is the cosmological scale factor, t is the conformal time, and gÄ ij(x
k)

is the metric of an (n 2 1)-sphere of unit radius. Since we will use dimensional
regularization we work, for the time being, in n dimensions. Matter is

described by a quantum scalar field F (x m ), where the Greek indices run from

0to n 2 1. The classical action for this scalar field in the spacetime background

described by the above metric is

Sm 5 2 # dxn ! 2 g F g m n - m F * - n F 1 1 n 2 2

4(n 2 1)
1 n 2 R F * F G (22)

where g 00 5 a2, g 0i 5 0, gij 5 a2gÄ ij, g is the metric determinant, n is a

dimensionless parameter coupling the field to the spacetime curvature ( n 5
0 corresponds to conformal coupling), and R is the curvature scalar which

is given by

R 5 2(n 2 1)
aÈ

a3 1 (n 2 1)(n 2 4)
aÇ 2

a4 1 (n 2 1)(n 2 2)
1

a2 (23)

where an overdot means derivative with respect to conformal time t. Let us

now introduce a conformally related field C

C 5 F a(n 2 2)/2 (24)

the time-dependent function U(t)

U(t) 5 2 n a2 (t)R(t) (25)

and the d’ Alambertian N 5 2 - 2
t 1 D (n 2 1) of the static metric dÄ s2 5 a 2 2 ds2.

The action may be written as



Noise-Induced Inflation 2765

Sm 5 # dt dx1 . . . dxn 2 1 ! gÄ F C *N C 2
(n 2 2)2

4
C * C 1 U(t) C * C G (26)

When n 5 0 this is the action of a scalar field C in a background of

constant curvature. The quantization of this field in that background is trivial

in the sense that a unique natural vacuum may be introduced, the ª inº and

ª outº vacua coincide, and there is no particle creation [2 ]. This vacuum is,

of course, conformally related to the physical vacuum; see (24). The time-
dependent function U(t) will be considered as an interaction term and will

be treated perturbativelly. Thus we will make perturbation theory with the

parameter n , which we will assume small.

To carry on the quantization we will proceed by mode separation,

expanding C (x m ) in terms of the (n 2 1)-dimensional spherical harmonics

Yl-
k (xi). The coefficients C l-

k (t) are just functions of t (one-dimensional fields),
and for each set (l,

-
k ) we may introduce two real functions f l-

k (t) and f Ä l-
k (t)

defined by

C l-
k [

1

! 2
( f l-

k 1 i f Ä l-
k ) (27)

The action becomes the sum of the actions of two independent sets

formed by an infinite collection of decoupled time-dependent harmonic

oscillators

Sm 5
1

2 # dt o
`

k 5 1
o -
k

[( f Ç l-
k )2 2 M 2

k( f l-
k )2 1 U(t)( f l-

k )2 ] 1 . . . (28)

where the dots stand for an identical action for the real one-dimensional

fields f Ä l-
k (t).

We will consider, from now on, the action for the one-dimensional fields
f l-

k only. The field equations, for the one-dimensional fields f l-
k (t) are,

from (28),

f È l-
k 1 M 2

k f l-
k 5 U(t) f l-

k (29)

which in accordance with our previous remarks will be solved perturbatively

on U(t). The solutions of the unperturbed equation can be written as linear
combinations of the normalized positive- and negative-frequency modes fk
and f *k , respectively, where

fk(t) 5
1

! 2Mk

exp( 2 iMkt) (3 0)

3.2. Closed-Time-Path Effective Action

We are now in the position to compute the regularized semiclassical

CTP effective action. This involves a careful consideration of the infinities

arising in perturbation theory, but after the dust settles, the result is
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G CTP [a 6 ] 5 SR
g,m [a+ ] 2 SR

g,m [a 2 ] 1 SR
IF [a 6 ] (31)

where the regularized gravitational and classical matter actions are

SR
g,m [a ] 5

2 p 2

l2P # dt 6a2 1 aÈa 1 1 2 2 2 p 2 # dt a4 L * 1
1

16 # dt U 2
1(t) ln(a m c) (32)

and the influence action is

SR
IF [a 6 ] 5

1

2 # dt dt8 D U(t)H(t 2 t8){U(t8)}

1
i

2 # dt dt8 D U(t)N(t 2 t8) D U(t8) (33)

where we have defined

D U 5 U + 2 U 2
, {U } 5 U + 1 U 2

(34)

Computing the kernels H and N involves the consideration of Feynman

graphs, where the internal legs represent propagators for a particle in a closed

space. This calculation may be carried out exactly, but the result is that,

unless for orbits with very small amplitude, the effect of spatial curvature is

not really important. It is convenient to compute these kernels as in a spatially

flat FRW universe with the same radius, which amounts to considering a
continuous, rather than a discrete, spectrum of modes. The result is

N(u) 5 #
`

0

dk cos 2ku 5
p
16

d (u) (35)

H(u) 5
1

8
Pf F u (u)

u G 1
g 1 ln m c

8
d (u) (36)

The distribution Pf( u (u)/u) should be understood as follows. Let f(u) be

an arbitrary tempered function; then

#
`

2 `

du Pf F u (u)

u G f(u) 5 lim
e ® 0

1 1 #
`

e

du
f(u)

u
1 f( 0) ln e 2 (37)

The approximation of substituting the exact kernels by their flat-space

counterparts is clearly justified when the radius of the universe is large, which
is when the semiclassical approximation works best.

The imaginary part of the influence action is known [3, 5, 6, 37±40] to

give the effect of a stochastic force on the system, and we can introduce an

improved semiclassical effective action,
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Seff [a 6 ; j ] 5 SR
g,m [a+ ] 2 SR

g,m [a 2 ] 1
1

2 # dt dt8 D U(t)H(t 2 t8){U(t8)}

1 # dt j (t) D U(t) (38)

where j (t) is a Gaussian stochastic field defined by the following statisti-

cal averages:

^ j (t) & 5 0, ^ j (t) j (t8) & 5 N(t 2 t8) (39)

The kernel H in the effective action gives a nonlocal effect (due to

particle creation), whereas the source j gives the reaction of the environment
on the system in terms of a stochastic force.

3.3. The Einstein ± Langevin Equation

The dynamical equation for the scale factor a(t) can now be found from

the effective action (38) in the usual way, that is, by functional derivation

with respect to a+(t) and then equating a+ 5 a 2 [ a. These equations include
the backreaction of the quantum field on the scale factor; they improve the

semiclassical equation by taking into account the fluctuations of the stress-

energy tensor of the quantum field [15, 16 ]. However, they also lead to the

typical nonphysical runaway solutions due to the higher order time derivatives

involved in the quantum correction terms.

To avoid such spurious solutions we use the method of order reduction
[41]. In this method one assumes that the equations obtained from the CTPEA

are perturbative, the perturbations being the quantum corrections. To leading

order the equation reduces to the classical equation, which, in terms of

scaled variables

b(t) [ ! 24 p
lP

a(t), L [
l4P

12 p 2 L * (40)

reads

bÈ 1 b 1 1 2
1

6
L b2 2 5 O( n ) (41)

The terms with bÈ or with higher time derivatives in the quantum corrections
are then substituted using recurrently the classical equation (41). In this form

the solutions to the semiclassical equations are also perturbations of the

classical solutions. Thus, by functional derivation of (38), we can write the

stochastic semiclassical backreaction equation as
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pÇ 5 2 V 8(b) 2 d V 8(b) 1 F(b, p, t) 1 J( j , b, p) (42)

where a prime means a derivative with respect to b, and we have introduced

p [ bÇ . The classical potential V(b) is

V (b) 5
1

2
b2 2

L
24

b4 (43)

An schematic plot of this potential is given in Fig. 1.

The remaining terms in Eq. (42) represent the quantum corrections. The

first one is purely local

d V(b) 5 2
3 n 2 L

4 F 1

2
b2 2

L
48

b4 2 p2 ln(b m Å ) G (44)

where we have already implemented order reduction.

From this point on, we shall disregard the local quantum correction to

the potential, d V(b). In the region where semiclassical theory is reliable, this

is only a very small correction to the classical potential; moreover, we are

concerned with such phenomena where the semiclassical behavior is qualita-
tively different from the classical one, which is not the case for these

corrections.

The term F(b, p, t) involves nonlocal contributions and may be written as

F(b, p, t) 5 2
- U

- b
I 2

d 2

dt2 1 - U

- bÈ
I 2 5 6 n H d 2

dt2

1

b
2

bÈ

b2 J I (45)

where I(b, p, t) is defined by

I(b, p, t) [ #
`

2 `

dt8 H(t 2 t8)U(t8) (46)

and

U(t) 5 2 6 n 1 bÈb 1 1 2 (47)

After order reduction, U(t8) must be evaluated on the classical orbit with

Cauchy data b(t) 5 b, p(t) 5 p, whereby it reduces to U 5 2 L n b2. Observe

that, in fact, this approximation makes the equation of motion local in time,

though no longer Hamiltonian. Finally, the function J is the noise given by

J( j , b) 5 6 n H d 2

dt2 1 jb 2 2
bÈ j
b2 J

and, after order reduction, by
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J( j , b, p) 5 6 n F j È
b

2
2 j Ç p

b2 1
2 j V 8(b)

b2 1
2 j p2

b3 G (48)

with j (t) defined in (39) in terms of the noise kernel.

3.4. The Classical Orbits

Before continuing, it is convenient to pause and consider the classical

orbits, as described by Eq. (41). They represent a particle moving in the one-

dimensional potential well Eq. (43), plotted schematically in Fig. 1. This

evolution preserves the Wheeler±DeWitt operator (energy, for short)

H(b, p) 5
1

2
p2 1 V(b) (49)

Physically, the value of H on a given orbit is the energy density of
radiation present besides the cosmological constant.

Fig. 1. A schematic plot of the classical potential; it vanishes as b2 when b ® 0, it has a

maximum, and decreases without bound for larger universes. Classical evolution preserves the

Wheeler ±DeWitt operator H 5 p2/2 1 V(b). If H exceeds the maximum of the potential, the

corresponding orbit either expands forever or collapses to the singularity. For lower H, the

classical orbit bounces off the outer classical turning point. For positive H below the maximum

of the potential, we have periodic bounded orbits representing an eternal cyclical universe.
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Figure 2 is a schematic representation of the classical phase space. There

is a stable fixed point (nothing) at b 5 p 5 0. This is the starting point of

Vilenkin’ s calculation. There is an unstable fixed point corresponding to

H 5 Es 5
3

2 L
; b 5 2 ! Es; p 5 0 (5 0)

This is an Einstein-type static universe. When H . Es , orbits are free

to expand forever.

For H , Es , we have two types of orbits. Those outside the well contract

at first, until they reach the classical turning point b+ and bounce off. The
de Sitter universe, with H 5 0, belongs to this family. In their final stages,

these orbits are essentiallly identical to the ever-expanding ones (cosmic no-

hair theorem). Orbits inside the well with 0 , H , Es bounce eternally

between the turning points 6 b 2 (there is no problem with a negative radius

of the universe, since only b2 has a physical meaning; we may also think of

b 5 0 as a perfectly reflecting boundary). The actual location of the turning
points is

Fig. 2. A sketch of the classical phase space. Only half is shown, the other half being the

mirror image. We can see the stable (elliptic) fixed point at the origin, and one of the unstable

(hyperbolic) fixed points. The separatrices connect the unstable points to each other, and divide

the region of periodic motion (within) from the region of unbound motion (outside). The

normalization is b8 5 b/2 ! Es, p8 5 p/ ! 2Es.
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b2
6 5 4Es F 1 6 ! 1 2

E

Es G (51)

The frequency V of oscillation is 1 for H ¿ Es , and vanishes as H ®
Es. This limiting value corresponds to two orbits, exponentially departing
from and approaching to the unstable fixed points, the so-called separatrices.

To fix ideas, let us adopt for L a value consistent with grand unified

scale inflation, which in natural units means L , 102 12. Then the value of

the separatrix energy is very high, Es , 1012. Our problem is to find a way

for a typical universe (H , 1), trapped within the well to climb out of it and
inflate. As we shall see, this is possible thanks to the combination of the

diffussive effect of quantum fluctuations and a runaway instability associated

with particle creation.

It ought to be clear that the final state of this evolution will be very

different than in the instanton approach. In the quantum calculation, the

universe emerges from under the barrier as an empty, H 5 0, de Sitter
universe. In our calculation, the universe goes above the barrier and emerges

with a large amount of radiation H 5 Es , corresponding to particles created

while inside the well. Physically, however, the difference is minor, as this

energy gets diluted in a few e-foldings by the inflationary expansion.

3.5. From Langevin to Kramers

Now we want to determine the probability that a universe starting at

the potential well goes over the potential barrier into the inflationary stage.

The magic of the CTPEA has turned an originally quantum problem into a

statistical mechanical one, indeed a classic problem associated with the name

of Kramers [42 ]. Observe that we are not interested in the features of solutions

associated with peculiar realizations of the noise, but rather in a noise-
averaged observable. Therefore, it is convenient to perform the noise average

at the outset, introducing the distribution function

f(b, p, t) 5 ^ d (b(t) 2 b) d ( p(t) 2 p) & (52)

where b(t) and p(t) are solutions of Eq. (42) for a given realization of j (t),
b and p are points in the phase space, and the average is taken both with

respect to the initial conditions and to the history of the noise. After some

standard manipulations we arrive at the so-called Kramers’ equation [43]

- f

- t
5 {H, f} 2

-
- p

[F(b, p, t)f ] 2
-
- p

F (53)

where the curly brackets are Poisson brackets, i.e.,
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{H, f } 5 2 p( - f/ - b) 1 V 8(b)( - f/ - p)

and

F 5 2
p n 2 L 2

4
b2 - f

- p
(54)

This term will be called the diffusion term since it depends on the

stochastic field j (t).
We notice that in the absense of a cosmological constant, we get no

diffusion. This makes sense, because in that case the classical trajectories
describe a radiation-filled universe. Such universe would have no scalar

curvature, and so it should be insensitive to the value of n as well.

3.6. From Kramers to Fokker ± Planck

In the usual statement of Kramers’ problem, the system is described by

a single variable x and obeys a Fokker±Planck equation [44]

- f

- t
5 g

-
- x F f

- F

- x
1 T

- f

- x G (55)

where T is the temperature (which fixes the sign of the diffussion term) and

F is the free energy (rather than a potential). Activation is studied from the

properties of the steady solutions of this equation, and the answer is the so-

called Arrhenius formula

P , e 2 Fmax/T (56)

where Fmax is the value at the peak of the free energy barrier.

Our Kramers equation is certainly more involved than Eq. (55), because

it describes other phenomena besides tunneling. Basically, there are three

things going on. Given a generic distribution function f, its dynamics consists

mostly of the representative phase-space points being dragged along the

classical orbits with a time scale of the order of a typical period. On a larger
time scale, we have the diffusion process, which makes f evolve toward a

quasiequilibrium, steady solution. Finally, there is activation, on an even

larger time scale.

Since our concern is this third process only, it is convenient to get rid

of the two faster ones. We get rid of classical transport by defining a new

distribution function which counts the number of universes on a given classical
orbit, rather than on a phase-space cell. This new distribution function does

not tell us where in the orbit we are, but we do not need that to study

activation. We achieve this by transforming the problem to action±angle

variables and averaging over the angles [45]. Finally, we get rid of the
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approach to quasiequilibrium by assuming a steady solution from the

beginning.

The averaged Kramers equation becomes

- f

- t
5

p n 2 L 2

4

-
- J H D(J )

V
- f

- J
2 Sf J (57)

where

D(J ) 5
1

2 p V #
2 p

0

d u b2p2 (58)

S(J ) 5
2 1

4 p 2 #
2 p / V

0

dt 1 d

dt
b2(t) 2 pf #

`

0

du

u
b2(t 2 u) (59)

This equation may be written as a continuity equation - tf 1 - JK 5 0, where

the probability flux K may be identified directly from (57). We see that, as

in Kramers’ problem, stationary solutions with positive flux K 0 should satisfy

D(J )

V
- f

- J
2 S(J )f 5 2

4

p n 2 L 2 K 0 (60)

From now on it is more convenient to use the energy E as a variable
instead of J, where E 5 H(J ). Both D and S individually behave as E 2 times

a smooth function of E/Es , and their ratio is relatively slowly varying. At low

energy, we find D , E 2/2 and S , E 2/4. As we approach the separatrix,

D ® 0.96 E 2
s and S ® 1.18 E 2

s . Meanwhile, the ratio of the two goes from 0.5

to 1.23. This means that we can write the equation for stationary distributions as

- f

- E
2 b (E )f 5 2

4

p n 2 L 2g(E ) 1 K0

E 2 2 (61)

where b and g are smooth order-one functions. There is a fundamental

difference with respect to Kramers’ problem, namely the sign of the second

term in the left-hand side. In the cosmological problem, the effect of nonlocal-

ity is to favor diffusion rather than hindering it. We may understand this as

arising from a feedback effect associated with particle creation [11 ].

3.7. The Activation Amplitude

Figure (3) is an out-of-scale, schematic plot of the solution of Eq. (61).
For E ¿ 1, the solution diverges as 1/E; for E $ 1, and for 12 decades

thereafter, it grows exponentially. Of course, our analysis doeas not hold

beyond the separatrix, but it can be shown that f turns around there, decaying

as a power of E as E ® ` .
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Fig. 3. A qualitative plot of the equilibrium distribution function as a function of E/Es. One

can appreciate the divergence toward the origin, the exponential rise toward the separatrix, and

the falling off in the inflationary region. For generic values of the cutoff, the area under the

curve is dominated by the peak at the separatrix.

This behavior cannot be extrapolated all the way to zero as it would

make f nonintegrable. However, we must notice that neither our treatment

(i.e., the neglect of logarithmic potential corrections) nor semiclassical theory

generally is supposed to be valid arbitrarily close to the singularity. Thus we
shall assume that the pathological behavior of Eq. (61) near the origin will

be absent in a more complete theory, and apply it only from some lowest

energy E d , 1 on. There are still 12 orders of magnitude between E d and Es.

We may now estimate the flux by requesting that the total area below

the distribution function should not exceed unity. Unless the lower cutoff E d

is very small (it ought to be exponentially small on Es to invalidate our
argument) the integral is dominated by the peak around Es , and we obtain

K0 # (prefactor) ? exp [2 b (Es)Es] (62)

The prefactor depends on L , n , g(1), b (1), s , and the details of the peak

shape, but only logarithmically on the cutoff. So we can take this as a bona

fide prediction of noisy semiclassical theory. Using Es 5 3/(2 L ), b (Es) 5
1.23, we get

K 0 # (prefactor) ? exp( 2 1.84/ L ) (63)

This is the semiclassical result to be compared against the instanton

calculations [29 ], which yield
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P , exp( 2 8/ L ) (64)

We see that the probability of noise activation is indeed larger than that

of quantum tunneling.
A final pertinent question is, was noise truly necessary? After all, one

could imagine there would be particle creation in each cycle, and the accumu-

lation of these particles alone would make inflation progressively easier to

achieve. Of course, in the absense of diffusion our argument would need to

be entirely redrawn; for example, it is not longer clear than an arbitrary f
would tend toward a steady solution, or on which time scales, nor that the
steady solution would have an acceptable behavior beyond the separatrix.

However, one could try to see what happens if one simply kills the diffusion

term in Eq. (61). The equation still admits a solution, but the divergence at

the origin gets worse (1/E 2), and indeed the flux seems to depend solely on

the value of the infrared cutoff, K0 , E d , which cannot be predicted within
the semiclassical theory. It is only the combination of particle creation and

diffusion which sets up the mechanism by which we get a definite result.

On the other hand, an infinity of cycles is not truly necessary. There is

a similar result in models where the universe is restricted to a single cycle;

the activation probability is somewhat lower, but still higher than the tunneling

one. We can understand this by analogy to the problem of black hole formation
in a box, where a big hole can form by slow accretion of smaller holes or

by a sudden, single large fluctuation. The difference is, of course, that in the

black hole case the latter is more likely than the former [46 ].

4. FINAL REMARKS

We have reported on a cosmological process where quantum-induced

noise and particle creation combine to yield a behavior notoriously different

than expected from classical theory, or even conventional, deterministic semi-

classical gravity. The strength of the effect is indeed comparable to a purely

quantum calculation, which shows that treating matter as test fields in quantum

gravity may not be justified. We believe this work is meaningful on at least
three different levels:

(a) Of course, our results are most important as a step forward in the

development of stochastic, semiclassical cosmological models. By now, the

mathematical and physical basis of such models is rather well understood,

but the development of actual models and the gathering of concrete predictions

is lagging behind. Our calculation has demanded the application of a number
of techniques which are not common tools of the trade in cosmology, and

could serve as an example for future projects.

(b) The relevance to cosmology may seem minor, since it does not seem

likely that our universe is spatially closed. However, the situation changes
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if the original question is rephrased as: Is it possible that a horizon-size,

overdense region in the early universe, with a homogeneous but sub-Planckian

value of the inflaton field, may avoid collapse and inflate? Clasically, the
answer is no, and this negative result may well be the bane of inflationary

models [47 ]. Our results suggest that semiclassically things may turn around.

(c) Finally, it has been observed that noise and dissipation are generic

to all effective theories [40]. So we must expect that similar results will be

found in the analysis of nucleation phenomena in other effective theories as

well, especially in quantum field theories [48 ], and in out-of-equilibrium
situations. Indeed, an approach such as ours seems to be the only way of

analyzing tunneling in situations where the environment changes on time

scales comparable to the time it takes to nucleate a bubble, an essentially

virgin field right now.

We continue our research on all these levels, and hope to report soon

on new results.
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